Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

Windows

Zunachst einmal sei darauf hingewiesen das sich dieses Tutorial auf die Bildung von Boost
unter Windows beschrénkt. Es wird eine Version fir Visual Studio .NET 2005, auch Version 8.0
genannt, gebildet. Wenn Sie die Boost Bibliotheken flir Linux bilden mdchten, finden Sie am
Ende dieser Seite einen Link der Ihnen eventuell weiterhilft. Desweiteren existiert in Visual
Studio .NET 2005 ein praktikabler und bequemer Weg die Boost Bibliotheken in sein eigenes
Projekt einzubinden. Dazu stellt die IDE eine neue Men(-Option namens 'Project from Existing
Code' zur Verfigung.

In einer Ausgabe von MSDN TV wird eine Video-Anleitung zur Einbindung von Boost unter
Visual Studio .NET 2005 vorgestellt. Am Ende dieses Tutorials finden Sie den entsprechenden
Download-Link zu dem Video.

Als fortgeschrittener C++ Programmierer werden Sie vielleicht schon mal von www.Boost.org
gehdrt haben oder ihnen wurden schon mal die Boost Bibliotheken empfohlen. Urspringlich
vom C++ Standardisierungskomitee gegriindet ist Boost zu einer gro3en Sammlung von freien
C++-Bibliotheken herangewachsen, die ein breites Spekirum an portablen Problemlésungen
bieten. Boost versucht die herausragenden Eigenschaften der generischen Programmierung
und der Metaprogrammierung aufzunehmen und zu erweitern. Die Boost Bibliotheken sind
vollstandig plattformunabhangig und bilden heute die Grundlage fur viele auf C++ basierende
Projekte. Zahlreiche Funktionen aus Boost wurden im Laufe der Zeit in den offiziellen Standard
aufgenommen und damit fester Bestandteil der C++-Programmiersprache.

Sie sehen, die Boost Bibliotheken bieten ihnen als C++ Programmierer ein breites Spektrum an
Méglichkeiten flr ihre Projekte. Bevor Sie die C++ Boost Bibliotheken nun erstellen kénnen,
bendtigen Sie einige Pakete.

- Laden Sie sich unter http://sourceforge.net/projects/boost/files/boost/ die aktuelle Boost
Distribution herunter. Sie haben die Wahl zwischen verschiedenen Paketen. In unserem Fall
werden wir das .zip Paket benutzen.

http://www.boost.org
http://sourceforge.net/projects/boost/files/boost/

Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

- Nun benétigen Sie noch den Build-Manager mit dem Namen Bjam. Sie kénnen diesen
tber die Kommandozeile selbst kompilieren. Alternativ dazu finden Sie unter http://sourc

eforge.net/projects/boost/files/boost-jam/
eine kompilierte Version. Seit der Version 1.43.0 von Boost, ist Bjam im Paket von Boost
enthalten. Ein separater Download von Bjam ist damit nicht mehr notwendig.

Nachdem Sie nun alle notwendigen Pakete zum Bau von Boost besitzen sollten Sie einen
Ordner erstellen. In unserem Beispiel werden wir den Ordner "boost" auf dem Laufwerk C:

erstellen. Unser Pfad lautet demnach C:boost.

Nun kopieren Sie das Paket boost-jam-3.1.14.zip in unseren zuvor erstellten Ordner hinein.
Extrahieren Sie nun auch die Boost Distribution und kopieren Sie diese ebenfalls in unseren
Ordner. Stellen Sie sicher das Sie gentigend freien Speicherplatz auf der Festplatte zur
Verflgung haben. Ein vollstandiger Bau von Boost nimmt ungefahr 3 GB Speicherplatz in

Anspruch.

Nun mUsste, je nachdem welche Version Sie geladen haben, lhr Verzeichnis wie folgt
aussehen:

eeeeeeeee

BJam kompilieren

Um den BJam Manager selbst zu kompilieren, missen wir die entsprechende Batch-Datei
aufrufen. Bevor Sie mit dem Bau von BJam beginnen, missen Sie sicherstellen das |hre
Umgebung entsprechend korrekt konfiguriert ist. Gehen Sie dazu in den Visual Studio Ordner -
in meinem Fall ist das der Pfad C:ProgrammeMicrosoft Visual Studio 8VCbin - und flihren Sie
Stapelverarbeitungsdatei vcvars32.bat aus. Bedenken Sie das Sie unter Windows Vista Uber
entsprechende Administratorrechte verfiigen mussen.

2/6

http://sourceforge.net/projects/boost/files/boost-jam/
http://sourceforge.net/projects/boost/files/boost-jam/

Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

Das Ausfihren von vecvars32.bat bewirkt das alle Umgebungsvariablen und andere Optionen fir
den Compiler richtig konfiguriert werden. Dieser Schritt ist besonders dann notwendig, wenn Sie
verschiedene C++-Compiler auf Inrem System installiert haben.

Nun sollten Sie {iberpriifen ob alle Variablen richtig gesetzt wurden. Offnen Sie wieder die
Kommandozeile, indem Sie z.B. in lnrem Programmordner die Visual Studio Mappe suchen,
anschlieBend den Ordner Visual Studio Tools 6ffnen und Visual Studio 2005 Command Prompt
ausfihren. Anschlie3end tippen Sie cl oder cl.exe ein. Der Microsoft C++-Compiler misste nun
fehlerfrei aufgerufen werden. Ist das nicht der Fall missen Sie lhre Visual Studio 2005
Installation noch einmal Uberprifen. Besonders unter Windows Vista verlauft die Installation von
Visual Studio 2005 oft nicht sauber, so dass es hier zu Fehlern kommen kann. Diese Probleme
wird Microsoft mit Erscheinen von Visual Studio 2008 beheben.

Sollte es auch bei Ihnen Probleme geben missen Sie die Umgebungsvariablen manuell
(iberpriifen und setzen. Offnen Sie dazu die erweiterten Systemeinstellungen unter lhrem
Arbeitsplatz und klicken Sie auf Umgebungsvariablen. Sehen Sie nach ob die Variable
VS80COMNTOOLS vorhanden ist und auf den richtigen Installationspfad zeigt. In unserem Fall
befindet sich die Installation der Tools unter dem folgenden Pfad: C:Program FilesMicrosoft
Visual Studio 8Common7Tools

Falls die Variable unter den Systemvariablen nicht vorhanden ist, legen Sie sie an.
Dariiberhinaus missen Sie die PATH Variable tberprifen. Bearbeiten Sie die Variable und
flgen die folgenden Pfade hinzu: C:Program FilesMicrosoft Visual Studio
8Common7IDE;C:Program FilesMicrosoft Visual Studio 8VCbin

Oftmals wird beim Ausflhren von cl.exe der fatale Fehler angezeigt das die mspdb80.dll nicht
gefunden werden konnte. Die oben ausgeflihrten Schritte beheben das Problem. Installieren
Sie auf keinen Fall die DLL in Ihrem System32 Ordner. Die Bibliothek befindet sich in Ihrem
Visual Studio Verzeichnis und wird bei korrekter Konfiguration auch richtig ausgefihrt.
Manchmal missen Sie neben den bereits genannten Pfaden noch den Pfad zu den C++
Headern explizit angeben. In meinem Fall ist das der folgende Pfad: C:Program FilesMicrosoft
Visual Studio 8VCinclude

Nachdem Sie die Schritte ausgefiihrt haben kénnen Sie die Dateien vcvars32.bat und
vevarsall.bat noch einmal ausflhren. Letztere befindet sich eine Verzeichnisebene tber der
ersten Datei. Rufen Sie nun den C++-Compiler noch einmal mit cl auf. Folgendes sollte nun auf
Ihrer Konsole zu sehen sein.

3/6

Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

(S G]

Sie haben nun alle mehr oder weniger aufwendigen Schritte hinter sich gebracht und lhre
Umgebung ist bereit um die Boost Bibliotheken zu kompilieren. Uber die Kommandozeile rufen
wir nun die bjam.exe auf und teilen dem Programm mit das es Bibliotheken sowohl fir den
Debug als auch fir den Release Modus bilden soll. Zusatzlich geben wir die Optionen threading
und runtime-link dynamic an. Auf diese Weise wird ein Debug/Release Build mit Multithreading
und dynamisch/statischen Libs fir Visual Studio 2005 (8.0) gebildet.

C:boost>bjam "-sBUILD=debug release static/dynamic multi" "-sTOOLS=vc-8 0"
Sie kénnen den Build auch jeweils einschranken:
C:boost>bjam "-sBUILD=release dynamic multi" "-sTOOLS=vc-8_0"

Alternativ zu den oben genannten Kommandozeilen Befehlen kbnnen sie auch zwei
Batch-Dateien mit folgendem Inhalt erstellen, in das Boost Stammverzeichnis kopieren und
ausfuhren.

boostdebugbuild.bat: bjam "-sBUILD=debug dynamic multi" "-sTOOLS=vc-8 0"
boostreleasebuild.bat: bjam "-sBUILD=release dynamic multi" "-sTOOLS=vc-8_0"

Die Variable sTOOLS kann auch mit anderen Daten geflttert werden, so dass Sie bei Bedarf
auch Bibliotheken flr Visual Studio 2003.NET (7.1) erstellen kénnen. Spezifizieren Sie dazu
einfach die genaue Version der Entwicklungsumgebung.

Die Boost Bibliotheken werden gebildet

Haben Sie alles richtig gemacht, werden nun die Boost Libraries gebildet. Da die Boost
Quellcodes massiven Gebrauch von Templates machen, benétigen die Compiler oft ziemlich
lange fur die Kompilierung. Unter Umstanden kann dieser Prozess 120 Minuten und langer
dauern. Je nachdem Uber welche Systemresourcen Sie verfligen und welche Bibliotheken
gebildet werden sollen. Als Richtwert kénnen Sie mit 180 Minuten auf einem Pentium 4 mit 2,53
GHz und 1024 MB Ram rechnen.

4/6

http://boost.sourceforge.net/boost-build2/doc/html/jam/building.html

Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

&]

Verwendung der Boost Bibliotheken

Die fertigen Lib's und DLL's finden Sie unter boost_1_34_1bin.v2. Das Einbinden in lhre C++
Entwicklungsumgebung realisieren Sie entsprechend Uber die Projekteigenschaften. Je
nachdem mit welchen Libraries sie Linken mochten und welche Run-Time Routinen (/MD, /ML
/MT, /LD (Use Run-Time Library)

) sie verwenden, missen sie die entsprechenden Optionen setzen. Boost bietet die Méglichkeit
Uber Praprozessor Direktiven das dynamische Linken explizit anzugeben. Nutzen sie dazu die
folgenden Direktiven:

[code xml:lang="cpp"J#define BOOST_ALL_DYN_LINK #define
BOOST_LIB_DIAGNOSTIC[/code]

Alternativ dazu kénnen sie vor Aufruf der Boost Header eine Header-Datei in den Precompiled
Headers includieren. Eine entsprechende Header-Datei ist diesem Tutorial angehangt.

Vergessen sie nicht die entsprechenden DLL's in das Verzeichnis ihres Programmes zu
kopieren wenn sie die Option "Multi-threaded DLL (/MD)" verwenden. Achten sie auBerdem
darauf das sie nicht statische Versionen mit dynamsichen Versionen der Run-Time Libraries
vermischen oder sie erhalten einen Compilerfehler. Die Header Dateien miissen wie gewohnt
ebenfalls in Ihr Projekt includiert werden.

Bei statischen Run-Time Linking "Multi-threaded Debug (/MT)" wird der Code entsprechend
statisch ihrem Programm hinzugefligt, so dass sie eine seperate DLL nicht bendtigen.

Herzlichen Glickwunsch! lhnen stehen nun die umfangreichen Funktionen von C++ Boost zur
Verflgung. AbschlieBend mdchten wir diese testen. Dazu nutzen wir das boost filesystem mit
diesem kleinen Programm.
[code xml:lang="cpp"])// Boost Dateien includieren #include "boost/filesystem/operations.hpp"
#include "boost/filesystem/fstream.hpp" #include using namespace std; //
Benutze fs flr den Boost filesystem Namensraum namespace fs = boost::filesystem; int
main() { fs:remove_all("foobar"); fs:icreate directory("foobar"); ofstream

5/6

http://msdn2.microsoft.com/en-us/library/2kzt1wy3.aspx
http://msdn2.microsoft.com/en-us/library/2kzt1wy3.aspx

Boost Bibliothek

Geschrieben von: StarShaper
Donnerstag, den 01. September 2005 um 16:32 Uhr - Aktualisiert Freitag, den 22. Juni 2012 um 20:46 Uhr

file("foobar/cheeze.ixt"); file

6/6

